The Preserve at Indian Hills Draft Environmental Impact Statement Subdivision/Site Plan Application, Fort Salonga

Appendix J-6 SONIR Model Results: Alternative 3

NAME OF PROJECT

Indian Hills - Alternative 3 Fort Salonga, NY

DATA INPUT FIELD

A Site Recharge Parameters	Value	Units	В	Nitrogen Budget Parameters	Value	Units
1 Area of Site	152.77	acres	1	Persons per Dwelling	2.93	persons
2 Precipitation Rate	49.90	inches	2	Nitrogen per Person per Year	10.0	lbs
3 Acreage of Fertilized Landscaping	47.79	acres	3	a. Sanitary Nitrogen Leaching Rate	84%	percent
4 Fraction of Land in above	0.313	fraction	3	b. Treated Sanitary Nitrogen Leaching Rate	100%	percent
5 Evapotranspiration from above	21.20	inches	4	Fertilized Landscaping	47.79	acres
6 Runoff from above	0.50	inches	5	Fertilizer Application Rate (for above)	2.04	lbs/1000 sq ft
7 Acreage of Unfertilized Landscaping	0.33	acres	6	Fertilizer Nitrogen Leaching Rate (for above)	30%	percent
8 Fraction of above	0.002	fraction	7	Fertilized Land (other, if applicable)	0.00	acres
9 Evapotranspiration from above	21.20	inches	8	Fertilizer Application Rate (for above)	0.00	lbs/1000 sq ft
10 Runoff from above	0.50	inches	9	Fertilizer Nitrogen Leaching Rate (for above)	0%	percent
11 Acreage of Unvegetated/Dirt Roads	0.00	acres	10	Outdoor Cat Population	0.74	pets/dwelling
12 Fraction of above	0.000	fraction	11	Cat Waste Nitrogen Load	3.22	lbs/pet/year
13 Evapotranspiration from above	21.20	inches	12	Outdoor Dog Population	1.40	pets/dwelling
14 Runoff from above	0.00	inches	13	Dog Waste Nitrogen Load	4.29	lbs/pet/year
15 Acreage of Water/Ponds	2.72	acres	14	Pet Waste Nitrogen Leaching Rate	25%	percent
16 Fraction of Site in above	0.018	fraction	15	Area of Land Irrigated	47.79	acres
17 Evaporation from above	30.00	inches	16	Irrigation Rate	24.00	inches
18 Makeup Water (if applicable)	0.00	inches	17	Irrigation Nitrogen Leaching Rate	10%	percent
19 Acreage of Natural	86.04	acres	18	Atmospheric Nitrogen Application/Load	0.04	lbs/1000 sq ft
20 Fraction of above	0.563	fraction	19	Atmos. N Leaching Rate (Natural/Wetlands)	25%	percent
21 Evapotranspiration from above	21.20	inches	20	Atmos. N Leaching Rate (Turf/Landscaped)	20%	percent
22 Runoff from above	0.50	inches	21	Atmos. N. Leaching Rate (Ag; Imperv; Other)	40%	percent
23 Acreage of Impervious/Paved/Bldgs	15.89	acres	22	Nitrogen in Water Supply	2.00	mg/l
24 Fraction of Land in above	0.104	fraction	23	Nitrogen in Sanitary Flow	50.00	mg/l
25 Evapotrans. from above	4.99	inches				
26 Runoff from Impervious	0.00	inches				
23 Acreage of Other	0.00	acres	C	Comments		
24 Fraction of Land in above	0.000	fraction	1)	Please refer to user manual for data input instructions; u	pdated per LINA	Р.
25 Evapotrans. from above	21.20	inches				
26 Runoff from above	0.00	inches				
27 Acreage of Land Irrigated	47.79	acres				
28 Fraction of Land Irrigated	0.313	fraction				
29 Irrigation Rate	24.00	inches				
30 Number of Dwellings	98	units				
31 Water Use per Dwelling	300	gal/day				
32 Wastewater Design Flow (clubhouse)	600	gal/day		Total Acreage Check	152.	8 100%

Indian Hills - Alternative 3

SITE RECHARGE COMPUTATIONS

A	Fertilized Landscaping	Value	Units	В	Unfertilized Landscaping	Value	Units
1	A = Fraction of Land in Cover Type	0.313	fraction	1	A = Fraction of Land in Cover Type	0.002	fraction
2	P = Precipitation Rate	49.90	inches	2	P = Precipitation Rate	49.90	inches
3	E = Evapotranspiration Rate	21.20	inches	3	E = Evapotranspiration Rate	21.20	inches
4	Q = Runoff Rate	0.50	inches	4	Q = Runoff Rate	0.50	inches
5	R(a) = P - (E + Q)	28.20	inches	5	R(b) = P - (E + Q)	28.20	inches
6	$R(A) = R(a) \times A$	8.82	inches	6	$R(B) = R(b) \times A$	0.06	inches

\boldsymbol{C}	Unvegetated/Dirt Roads	Value	Units	D	Water/Ponds		
1	A = Fraction of Land in Cover Type	0.000	fraction	1	A = Fraction of Site in Water	0.018	fraction
2	P = Precipitation Rate	49.90	inches	2	P = Precipitation Rate	49.90	inches
3	E = Evapotranspiration Rate	21.20	inches	3	E = Evaporation Rate	30.00	inches
4	Q = Runoff Rate	0.00	inches	4	Q = Runoff Rate	0.00	inches
5	R(c) = P - (E + Q)	28.70	inches	5	M = Makeup Water	0.00	inches
6	$R(C) = R(c) \times A$	0.00	inches	6	$R(d) = \{P - (E+Q)\} - M$	19.90	inches
			_	7	$R(D) = R(d) \times A$	0.35	inches

E	Natural		F	Impervous/Paved/Roads	Value	Units	
1	A = Fraction of Land in Cover Type	0.563	fraction	1	A = Fraction of Land in Cover Type	0.104	fraction
2	P = Precipitation Rate	49.90	inches	2	P = Precipitation Rate	49.90	inches
3	E = Evapotranspiration Rate	21.20	inches	3	E = Evapotranspiration Rate	4.99	inches
4	Q = Runoff Rate	0.50	inches	4	Q = Runoff Rate	0.00	inches
5	R(e) = P - (E + Q)	28.20	inches	5	R(f) = P - (E + Q)	44.91	inches
6	$R(E) = R(e) \times A$	15.88	inches	6	$R(F) = R(f) \times A$	4.67	inches

G	Other			H	H Irrigation Recharge			
1	A = Fraction of Land in Cover Type	0.000	fraction	1	A = Fraction of Land Irrigated	0.313	fraction	
2	P = Precipitation Rate	49.90	inches	2	I = Irrigation Rate	24.00	inches	
3	E = Evapotranspiration Rate	21.20	inches	3	E = Evaptranspiration Rate	21.40	inches	
4	Q = Runoff Rate	0.00	inches	4	Q = Runoff Rate	0.00	inches	
5	R(g) = P - (E + Q)	28.70	inches	5	R(h) = I - (E + Q)	2.60	inches	
6	$R(G) = R(g) \times A$	0.00	inches	6	$R(H) = R(H) \times A$	0.81	inches	

I	Wastewater Recharge		\boldsymbol{J}	Runoff Recharge			
1	WDF = Wastewater Design Flow	600	gal/day	1	Q(A) = Runoff from Landscaped	0.156	inches
2	WDF = Wastewater Design Flow	29,280	cu ft/yr	2	Q(B) = Runoff from Unfertilized Landscaping	0.001	inches
3	A = Area of Site	6,654,661	sq ft	3	Q(C) = Runoff from Unvegetated	0.000	inches
4	R(j) = WDF/A	0.00	feet	4	Q(E) = Runoff from Natural	0.282	inches
5	R(I) = Wastewater Recharge	0.05	inches	5	Q(H) = Runoff from Other	0.000	inches
		6	Q(I) = Runoff from Irrigation	0.00	inches		
		7	O(tot) = O(A) + O(B) + O(C) + O(E) + O(H) + O(I)	0.44	inches		

Total Site Recharge						
R(T) =	R(A)+R(B)+R	(C)+R(D)+R(E)+R(F)+R(G)+R(H)+R(I)+R(J)+Q(tot)				
R(T) =	31.10	inches				

SITE NITROGEN BUDGET

Indian Hills - Alternative 3

SITE NITROGEN BUDGET			_	[a . w w.		T:
[.]	T	I	B	Cat Waste Nitrogen	Value	Units
A Sanitary Nitrogen-Residential	Value	Units	1	Number of Cats per Dwelling	73	cats/dwelling
1 Number of Dwellings	98	units	2	`		cats
2 Persons per Dwelling	2.93	capita	3	3 Cat Waste Nitrogen Load		lbs/cat/year
3 P = Population	287.14	capita	4	$N(p) = AR \times cats \times Adjustment (if applicable)$	233.51	lbs/year
4 N = Nitrogen per person	10	lbs	5	LR = Leaching Rate	25%	percent
6 N = (total; pre loss/removal)	2871.4	lbs	6	$N(P) = N(p) \times LR$	58.38	lbs
7 LR = Leaching Rate	84%	percent	7	N = (loss/removed)	175.14	lbs
$8 N(S) = P \times N \times LR$	2411.98	lbs	l			
9 N = loss/removed	459.42	lbs	B'	Dog Waste Nitrogen	Value	Units
			1	Number of Dogs per Dwelling	1.40	dogs/dwelling
			2	Number of Dogs (Dogs/dwelling x dwellings)	137	dogs
C Sanitary Nitrogen (Wastewater Design	Flow)		3	Dog Waste Nitrogen Load	4.29	lbs/dog/year
1 CF = Commercial/STP Flow	600	gal/day	4	$N(p) = AR \times dogs \times Adjustment (if applicable)$	588.59	lbs/year
2 CF = Commercial/STP Flow	828,915	liters/yr	5	LR = Leaching Rate	25%	percent
5 N =Nitrogen	50.00	mg/l	6	$N(P) = N(p) \times LR$	147.15	lbs
6 N = Nitrogen	91.39	lbs	7	N = (loss/removed)	441.44	lbs
7 LR = Leaching Rate	84%	percent				
$8 N(S) = CF \times N \times LR$	34,814,430	milligrams	D	D Water Supply Nitrogen (other than wastewater, if applicable)		
9 N(S) = Sanitary Nitrogen	76.77	lbs	1	WDF = Wastewater Design Flow	0	gal/day
10 N = loss/removed	14.62	lbs	2 WDF = Wastewater Design Flow 0 li		liters/yr	
			3	N = Nitrogen in Water Supply	50.00	mg/l
		4	$N(WW) = WDF \times N$	0	milligrams	
E Fertilized Land (Fertilized Landscaping)		5	N(WW) = Wastewater Nitrogen	0.00	lbs	
1 A = Area of Land Fertilized	2,081,732	sq ft			•	
2 AR = Application Rate	2.04	lbs/1000 sf	F	Fertilized Land (Unfertilized Landscaping)		
3 N(T) = Nitrogen (total applied)	4246.73	lbs	1	A = Area of Land Fertilized 2	0	sq ft
4 LR = Leaching Rate	30%	percent	2	AR = Application Rate	0.00	lbs/1000 sf
$5 N(F1) = A \times AR \times LR$	1274.02	lbs	3	N(T) = Nitrogen (total applied)	0.00	lbs
6 N = loss/removed	2972.71	lbs	4	LR = Leaching Rate	0%	percent
			5	$N(F2) = A \times AR \times LR$	0.00	lbs
			6	N = loss/removed	0.00	lbs
G Atmospheric Nitrogen (existing condition	on)		1			
1 Application Load	0.041	lbs/1000 sf	H	Irrigation Nitrogen		
2 Area of Natural/Wetlands/1000 sf	3,881	1000 sf	1	R = Irrigation Recharge (inches)	0.81	inches
3 Leaching Rate	25%	percent	2	R = Irrigation Rate (feet)	0.0678	feet
4 Atmos. N Load-1 (natural/wetlands)	39.78	lbs/year	1 -	A = Area of Land Irrigated	1,045,440	sq ft
5 Area of turf/landscaped/1000 sf	2,082	1000 sf	4			cu ft
6 Leaching Rate	20%	percent	5			liters
7 Atmos. N Load-2 (golf/turf)	17.07	lbs/year			mg/l	
8 Area of Impervious/Agricult/1000 sf	692	1000 sf	7	N(T) = Nitrogen (total applied)	8.85	lbs
9 Leaching Rate	40%	percent	8	LR = Leaching Rate	10%	percent
10 Atmos. N Load-3 (ag; imperv; other)	11.35	lbs/year	9	$N(irr) = R(I) \times N \times LR$	401,341	milligrams
11 N(at) = N Load 1 + 2 +3	68.20	lbs	10		0.88	lbs
12 N = loss/removed	204.64	lbs	11	N = loss/removed	7.96	lbs
12 11 - 1088/10H0vcu	404.04	109	11	1v = 1055/10110vcu	7.90	102

Total Site Nitrogen						
N=	N(S) + N(P) + N(WW) + N(F1) + N(F2) + N(ppt) + N(irr)					
N=	4,037.37 lbs					

NAME OF PROJECT

Indian Hills - Alternative 3 Fort Salonga, NY

FINAL COMPUTATIONS

\boldsymbol{A}	Nitrogen in Recharge (concentr.)	Value	Units
1	N = Total Nitrogen (lbs)	4,037.37	lbs
2	N = Total Nitrogen (milligrams)	1,832,966,963	milligrams
3	R(T) = Total Recharge (inches)	31.10	inches
4	R(T) = Total Recharge (feet)	2.59	feet
5	A = Area of Site	6,654,661	sq ft
6	$R = R(T) \times A$	17,244,170	cu ft
7	R = Site Recharge Volume	488,354,899	liters
9	NR = N/R	3.75	mg/l

CONCENTRATION OF NITROGEN IN RECHARGE

3.75

\boldsymbol{A}	Nitrogen in Recharge	Value	Units
1	N = Total Nitrogen (lbs)	4,037.37	lbs
2	N = Total Nitrogen (milligrams)	1,832,966,963	milligrams
3	R(T) = Total Recharge (inches)	31.10	inches
4	R(T) = Total Recharge (feet)	2.59	feet
5	A = Area of Site	6,654,661	sq ft
6	$R = R(T) \times A$	17,244,170	cu ft
7	R = Site Recharge Volume	488,354,899	liters
9	NR = N/R	3.75	mg/l

В	Site Recharge Summary	Value	Units
1	R(T) = Total Site Recharge	31.10	inches/yr
2	R = Site Recharge Volume	17,244,170	cu ft/yr
3	R = Site Recharge Volume	128,995,360	gal/yr
4	R = Site Recharge Volume	129.00	MG/yr

Conversions used in SONIR	
Acres x $43,560$ = Square Feet	Gallons x 0.1337 = Cubic Feet
Cubic Feet x $7.48052 = Gallons$	Gallons x $3.785 = Liters$
Cubic Feet $x 28.32 = Liters$	Grams / 1,000 = Milligrams
Days $x 365 = Years$	Grams x $0.002205 = Pounds$
Feet x 12 = Inches	Milligrams / 1,000 = Grams

Nitrogen Load Summary - On-Site	Load	Percent
Sanitary Nitrogen (On-Site Wastewater)	2,488.74	61.64%
Fertilized Landscaping	1274.02	31.56%
Dog Waste Nitrogen	147.15	3.64%
Cat Waste Nitrogen	58.38	1.45%
Atmospheric Nitrogen	68.20	1.69%
Irrigation Nitrogen	0.88	0.02%
Total Pounds Nitrogen	4,037.37	100.00%

